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LATERAL DEFORMATION OF SHALLOW SHELLS OF
REVOLUTION

THOMAS J. LARDNER and JAMES G. SIMMONDS
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract-Shallow shells of revolution of radially varying thickness undergoing small deformations proportional
to the sine or cosine of the polar angle (lateral deformation) are considered. By use of certain integrals expressing
overall equilibrium and compatibility of the shell, it is shown that the solution of the governing differential
equations can be reduced to the solution of two coupled second-order differential equations. Explicit solutions
for a class of shells whose meridional slope varies as a power of the radius are obtained in terms of Kelvin
functions and their integrals.

INTRODUCTION

IN THIS paper, we consider shallow shells of revolution of radially varying elastic proper­
ties undergoing small deformations proportional to the sine or cosine of the polar angle
(which here will be denoted as lateral deformations). It is shown that the solution to the
two coupled fourth-order partial differential equations for the normal displacement W
and Airy's stress function F which govern the problem for arbitrary deformations can
be reduced to the solution of two coupled second-order ordinary differential equations.
For shells of constant thickness and constant elastic properties whose meridional slope
varies as a power of the radius, it is further shown that the solutions of the second-order
equations can be expressed in terms of Kelvin functions and their integrals. An exception
is the shell of logarithmic profile for which the solutions can be expressed in terms of
elementary functions.

That the equations for arbitrary shells of revolution undergoing lateral deformations
should admit of reductions similar to those known to exist for axi-symmetric deformations,
was pointed out by Novozhilov [1]. For both axi~symmetricand lateral deformations, the
reductions are possible because first, certain integrals expressing overall equilibrium and
compatibility conditions of the shell become first integrals of the differential equations;
and second, because rigid body displacements are solutions of the homogeneous differen~

tial equations. Utilizing these ideas, Chemin [2] has obtained a complex~valued second~

order ordinary differential equation for the lateral deformation of arbitrary shells of
revolution of constant thickness. While a number of our equations could be obtained
from analogous ones of Chemin by an appropriate limiting process, we feel that it is
simpler to develop these equations from the start within the ,framework of shalJow shelJ
theory. We also wish to indicate the special treatment that must be given to the Airy
stress function F, which is a convenient and standard variable to use in shallow shell
theory. Finally, we remark that our results are more extensive than Chemin's in that we
allow for radially varying elastic properties and that we give closed form solutions for
a class of shell profiles.
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THE GOVERNlNG EQUATIONS

The equilibrium equations of the linear theory of shallow shells of revolution, ex­
pressed in terms of the direct stress resultants, N"No,N,o(=No,), the stress couples
M" Mo, M,o (=Mer), and the transverse shear stress resultants Q" Qo, are

(rN,Y +N~o-No+rP. = 0,

(rN,o)' +No+N.o+rPo = 0,

(rQ.Y +Qo+(rz'N.Y +z'N~o+rPz = 0,

(rM.)' +M~6-Mo rQ. = 0,

(rMreY +Mo+Mre-rQo = 0,

(1)

(2)

(3)

(4)

(5)

where z = z(r) is the midsurface profile equation, P" Po, and Pz are the components of
the load intensity in the radial, circumferential, and axial directions, and primes and dots
indicate differentiation with respect to rand e, respectively,

The extensional and bending strains are expressed in terms of the radial, circumferen­
tial, and axial displacement components V, V, and Was follows

e. = V' +z'Jv,
V V-

eo = -+-,
r r

(6a,b)

(
V)' U· W·

2e.o = r - +-+ z'--,
r r r

(6c)

Kr = -W",
W' W"

1<:0= ----,
r r 2 (W·),

K,o=---,-, (7a,b,c)

Assuming isotropy, the stress-strain relations are

where

e, = A(N;-vNo),

M, = D(K, + VKo),

el) = A(NI)-vNr),

Mo = D(l<:o+VK.),

e.o = (1 +v)AN,o,

M,o = (1- V)DK,o,

(8)

(9)

1
A = Eh'

and where E is Young's modulus, v is Poisson's ratio, and h is the shell thickness.
It will be assumed that the external load terms P, and Po are derivable from a load

potential W,

Pr := -W',

in which case equations (1) and (2) can be satisfied identically in terms of a stress function
F as follows:

F' F"
N'=-+2+ W,r r

No = F"+W, (
Y\I

Nre = - 7)' (lOa,b,c)
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Upon elimination of the transverse stress resultants, the remaining three equilibrium
equations (3H5) reduce to

(rMr)" +2r- 1M;o+ 2M~9-M~+ r- 1Mil +(z'F)' +r- 1z"F'" = - rPz -(rz'<1')'. (11)

As in the theory of plane stress, the introduction of the stress function F as a dependent
variable requires the satisfaction of an extensional strain compatibility equation. For
a shallow shell of revolution, this equation is, consistent with equations (6),

(12)

Equations (7) and the homogeneous parts of equations (10), and equation (12) and
the homogeneous part of equation (11) exhibit the static-g~ometric analogy of shell
theory [1] in a form appropriate for shallow shells:

Upon substituting equations (7) and (9) into equation (11), and equations (8) and (10)
into equation (12), and assuming A = A(r), D = D(r), and v constant, the following
two coupled equations for Wand F are obtained

V2(DV2W)-(1-v)K(D, W)-K(z,F) = Pz +r- 1(rz'<1')', (14)

V2(AV2F) - (1 +v)K(A, F) +K(z, W) = - (1- v)V2(A<1'). (15)

In this V2 is the two-dimensional Laplace operator in polar coordinates and
D' D" D

K(D, W) = -W"+ -W'+-W". (16)
r r r 2

For A, D, and h constant, and <1' = 0, equations (14) and (15) reduce to the Marguerre
shallow shell equations [3].

At this point we could introduce the assumption of lateral deformation and attempt a
direct integration of equations (14) and (15). However the significance of the two constants
of integration which are introduced thereby is not immediately apparent.

Furthermore, it is known that F, in general, must include a multi-valued portion, Fm •

(See [4], for example, for a discussion of the need of a multi-valued stress function for a
spherical shell subject to a lateral side force.) It is not clear from equations (14) and (15)
however, what the explicit form of Fm should be.

To avoid these two difficulties, we consider, in the next Section, integrals representing
overall equilibrium and compatibility of the shell which can be determined without
reference to equations (14) and (15). When lateral deformations are assumed, certain of
these integrals become non-trivial first integrals of equations (14) and (15) with associated
constants of integration having immediate physical interpretation, while others lead to
the explicit form of Fm'

INTEGRAL CONDmONS

The stress resultants and couples must, for arbitrary deformations, satisfy six integral
relations which express the overall force and moment equilibrium of the shell. Six addi­
tional integral relations involving the extensional and bending strains, which may be
interpreted as displacement and rotation continuity conditions, can be found from the
static-geometric analogy.
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Of interest for what follows are the equations of overall force equilibrium along the
x-axis and overall moment equilibrium about the y-axis (see Fig. 1), together with the two
analogous geometric conditions.

y

FIG. 1. Midsurface geometry and stress conventions.

The force and moment equations read

fl"JrP(r) + (PrcosO-PosinO)rdrdO = Po
o a

and

(17)

z(r)p(r) +M(r)+ J:I[z(Prcos 0 - Po sin 0) - rPz cos O]r drdO = M 0 (18)

where a is the radius of the inner edge of the shell,

P(r) = r f:"(Nrcos 0- N rO sin 0) dO

is the net lateral force along the x-axis acting on the horizontal section z = const.

J
l"

M(r) = r 0 [MrcosO-MrosinO-r(Qr+z'Nr)cosO]dO

(19)

(20)

is the net moment acting on the horizontal section z = const. calculated about a line
parallel to the y-axis and lying in the plane of the section; and where Po and M 0 denote
the values of the x-component of the force and the y-component of the moment at the
origin, z = O.

By equation (13) the two geometric analogs of equations (17) and (18) are:

(" (KO cos 0+ KrO sin 0) dO = 0, (21)

f:" {EO cos 0+Ere ~in 0+[- (reo)' + E~O +Er + rz'Ko]cos O} dO = O. (22)

For future use, we note the form assumed by equations (17) and (21) when the variables
involved are expressed in terms of Wand F. Inserting equations (10) into equation (17)
and expressing Pr and Po in terms of cI>, we get

(23)
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which leads to the relation

F'(r, 2n) - F'(r, 0) = r [Po - a(' <I>(a, 8) cos 8 d8].

381

(24)

Equation (24) shows that, in general, part of the solution for F is multi-valued, and that
this multi-valued part is proportional to r. The geometric analog of equation (24), which
follows upon inserting equations (7) into equation (21), is simply

W'(r, 2n) - W'(r, 0) = 0

which, for continuous displacements and rotations, is identically satisfied.
Since we have assumed that A = A(r), D = D(r), v = const., and that the shell is

complete in the 8-direction, it follows that, for arbitrary deformations, P z ' <1>, the mid­
surface displacements, the stress resultants and couples, and the single-valued part of F,
Fs ' can all be expanded in Fourier series of the form

00

L an(r) cos n8 +bn(r) sin n8.
n=O

When solutions of this form are substituted into the six equations of overall force and
moment equilibrium, the two equations of axial force and axial moment equilibrium are
found to depend on the n = 0 components only, while the remaining four equations of
force and moment equilibrium along and about the x- and y-axes are found to depend on
the n = 1 components only. The n ~ 2 components do not contribute to the overall
force and moment integrals since they lead to a system of self-equilibrating loads; similar
statements hold for the six analogous geometric integrals. Thus the study of the solu­
tions to the governing equations reduces to a study of the three cases· n = 0, n = 1, and
n ~ 2. The remainder of this note is devoted to the applications of these integral rela­
tions to the n = 1 case.

SIMPLIFICATION OF THE DIFFERENTIAL EQUATIONS FOR n = 1

For n = 1, we consider solutions of the form

(Fs' W, U, N., No, Q., M., M o, <1>, Pz) = US' w, ... , pz) cos 8,

(V, N ro , Qe, M re) = (v, nro, qe, mro) sin 8,

(25)

(26)

which are associated with the two integrals of force equilibrium along the x-axis and
moment equilibrium about the y-axis given by equations (17) and (18). It is sufficient to
consider solutions of this form since the solutions associated with the integrals of force
equilibrium along and about the y- and x-axes, respectively, can be obtained from the
above solutions by replacing () by () + n12.

We first determine the explicit form of Fm' the multi-valued part of F. We have
already noted, from equation (24), that Fm must be proportional to r. But, for n = 1,
(N., N e) = (n" no) cos e and N rO = nrO sin e. Hence, it follows from equation (10) that

F m = Bre sin () (27)

• For a shell of revolution with two edges fixed to rigid circular inserts to which forces and moments are
applied, we note that the complete solution is composed of the n= 0 and n = 1 solutions alone.
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and substituting equation (27) into equation (24) we get

Po a
B = 2n - 2. 4>(a). (28)

(29)

(30)

We now consider the differential equations satisfied by w(r) and Is(r). The basic
simplification for n = 1 is that, instead of equations (14) and (15), equations (18) and (22)
may be taken as differential equations for wandis. Indeed,for n = 1, equations (18) and
(22) are nothing more than first integrals of equations (14) and (15), respectively. A second
simplification follows from the fact that w = r and Is = r must be solutions of the homo­
geneous form of these differential equations since they yield zero stress resultants and
bending strains. Altogether then, we obtain upon setting

W = w(r) cos ()

= r (fXdr + C1) cos ()

and

F = Fm(r, ()) +Is(r) cos ()

= r (t[Poln - a4>(a)]() sin ()+ (f '" dr+ C2 ) cos ()}

and substituting these expressions into equations (18) and (22), the following two second­
order differential equations for Xand'" :

(
rD' ,\ [ rD' 1 z'r

r2x"+ v+ 3rx'+ (2+v)v- 3Jx- v'"
M o rPo(z)' a4>(a) z'= - + - - + --[z(r)-z(a)] + - [r4>(r)-a4>(a)] (31)
nDr nD r Dr D

1 Jr+ - (rpz-z'4»r dr,
Dr

a

r2
"''' + (r:' + 3\""+ [(2-V{:' -3J",+ ~X

/ (32)

= [:0 -a4>(a)] [1~V -v~J-(l-V)~(A1)' -4>].

Equations (31) and (32) are of comparable simplicity to the two coupled second-order
equations one obtains for axi-symmetric deformations [5].

EXPLICIT SOLUTION OF THE DIFFERENTIAL EQUATIONS FOR A
CLASS OF SHELLS

We consider now shells with constant thickness and elastic properties whose meri­
dional slope varies as a power of the radius:

z'(r) = rxp', p = ria. (33)
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(36)

(34)

(35)

(38)

(37)

Furthermore, for simplicity, we restrict ourselves to edge loaded shells (t/J = pz = 0),
take p as the new independent variable, and now use primes to denote differentiation with
respect to p. Equations (31) and (32) then reduce to

p2x"+3pX'-3x- (~)p'+lt/t

Mo rxPo(. 1J.)= --+- p - - p dp
nDap nD p

p2t/t" +3pt/t' _ 3t/t + (rxa)p.+ 1X = (1- v)po.
A nap

Equations (34) and (35) may be further reduced to a single complex equation. Multiply­
ing equation (35) by i(AID)t and adding it to equation (34), we obtain

[
2 d

2
d . rxa .+11 [ .J(A) Jp dp2+ 3Pdp -3+1 J(AD)P J X+I 15 t/t

1 [Mo. J(A) ] rxPo(. 1r . \
= nap V+ /(l-v) 15 Po + nDI( - pJ pdp)'

To discuss the solutions of equation (36), we must distinguish the two cases 8 ¥- -1, and
8 = -1, the latter corresponding to a shell of logarithmic profile.

For 8 ¥- -1, the operator on the left-hand side of equation (36) is a Bessel operator,
and the complete solutions for Xand t/t can be written

1 2/ 2 8 PoX= -[C3berm(mJLP m)+C4kerm(mJLP /m)]_ --- +Xp ,
P 8+ 1 nap

t/t = ~j(~) [C3beim(mJLp2/m)+ C4keim(mJLp2/m)] + t/tp,

where

4
m=--

8+1'
2 rxa

4JL = J(AD)'

and where Xp and t/tp are particular solutions expressible in terms of Lommel functions
[6, p. 350].* For shallow spherical (8 = 1) and conical (8 = 0) shells, equations (37) and
(38) reduce to known results [4, 7].

For 8 = -1, the operator on the left-hand side of equation (36) is equidimensional,
and the complete solution is

X+iJ(~)t/t = C3pP'+C4pP2- 4n~(:~:4)p{~o+rxPo~-lnp+{~::)J} (39)

where C3 and C4 are arbitrary complex constants and P1 and P2 are the two roots of

p2+2p-3-i4JL2 = o.
* We note that for axi-symmetric deflections (n = 0), the homogeneous solutions of the corresponding

second-order differential equation have exactly the same form as the homogeneous parts of equations (37)
and (38) but with m = 2/(s+ I), [5].
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This solution in powers of p (for Po = M 0 = 0) is a special case of the solution for all
values of the integer n obtained in [8].
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Zusammenfassung-Es werden Drehschalen mit radial veranderlicher Dicke untersucht, welche dem Sinus und
Kosinus des Polarwinkels proportionalen Deformationen (seitlichen Deformationen) unterliegen. Durch die
Verwendung gewisser Intergrale, welche das Gesamtgleichgewicht und die Kompatibiliilit der Schale zum
Ausdruck bringen, Jasst es sich zeigen, dass die Liisung der bestimmenden Differentialgleichung auf die Liisung
zweier gekoppelter Differentialgleichungen zweiter Ordnung reduziert werden kann. Die expliziten Liisungen
flir eine Schalenklasse, deren meridionale Neigung sich mit der Potenz des Radius andert, werden in Kelvin­
'funktionen und deren Integralen ausgedriickt.

A6CTpaKT-PaccMaTpHBlUOTCli HerJIy60KHe 060JIO'lKit TeJI BpaweHHlI c pa,uHaJIbHO It3MeHlIIOweHcli
TOJIWHHOH, no,uBeplKeHHble He6oJIbWOH ,ue<j>opMaLIltH, nponoPLIHOHaJIbHOH CHHyCy HJIH KOCHHyCy nOJIllp­
HOro yrJIa (6oKoBali ,ue<j>opMaLIHH).

DpHMeHeHHeM H3BeCTHblX HHTerpaJIOB, BblpalKalOWHX o6wee paBHOBeCHe H COBMecTHOCTb 060JIO'lKIt,
L1eMOHcTpHpyeTcli 'ITO peweHHe ynpaBJUllOWHX ,uH<j><j>epeHLIHaJIbHbIX ypaBHeHHH MOlKeT 6blTb CBeLIeHO
K peweHHIO L1ByX cnapeHHblX J:IH<l><l>epeHl.\HaJIbHbIX ypaBHeHHH BToporo nopH,uKa. RBHble peweHHH LIJ1l1
Toro KJIaCCa 060JIO'leK, y KOToporo MepH,uHOHaJIbHbIH yKnoH ItlMeHHeTCH CO CTeneHblO paLiHyca, nony­
'1alOTCli B ycnoBHlIX <j>yHKLIHH KenbBHHa H HX HHTerpanOB.


